Compact, non-nuclear operators

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Representing non–weakly compact operators

For each S ∈ L(E) (with E a Banach space) the operator R(S) ∈ L(E/E) is defined by R(S)(x + E) = Sx + E (x ∈ E). We study mapping properties of the correspondence S → R(S), which provides a representation R of the weak Calkin algebra L(E)/W (E) (here W (E) denotes the weakly compact operators on E). Our results display strongly varying behaviour of R. For instance, there are no non–zero compact...

متن کامل

Compact Sets and Compact Operators

Proof. Properties 2 and 3 are left to the reader. For property 1, assume that S is an unbounded compact set. Since S is unbounded, we may select a sequence {vn}n=1 such that ‖vn‖ → 0 as n→∞. Since S is compact, this sequence will have a convergent subsequence, say {vk}k=1, which will still be unbounded. This sequence is Cauchy, so there is a positive integer K for which ‖v`− vm‖ ≤ 1/2 for all `...

متن کامل

Compact Operators

In these notes we provide an introduction to compact linear operators on Banach and Hilbert spaces. These operators behave very much like familiar finite dimensional matrices, without necessarily having finite rank. For more thorough treatments, see [RS, Y]. Definition 1 Let X and Y be Banach spaces. A linear operator C : X → Y is said to be compact if for each bounded sequence {xi}i∈IN ⊂ X , t...

متن کامل

Compact Operators

In these notes we provide an introduction to compact linear operators on Banach and Hilbert spaces. These operators behave very much like familiar finite dimensional matrices, without necessarily having finite rank. For more thorough treatments, see [RS, Y]. Definition 1 Let X and Y be Banach spaces. A linear operator C : X → Y is said to be compact if for each bounded sequence {xi}i∈IN ⊂ X , t...

متن کامل

Index Theorem for Equivariant Dirac Operators on Non-compact Manifolds

Let D be a (generalized) Dirac operator on a non-compact complete Riemannian manifold M acted on by a compact Lie group G. Let v : M → g = LieG be an equivariant map, such that the corresponding vector field on M does not vanish outside of a compact subset. These data define an element of K-theory of the transversal cotangent bundle to M . Hence, by embedding of M into a compact manifold, one c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Mathematica

سال: 1974

ISSN: 0039-3223,1730-6337

DOI: 10.4064/sm-51-1-81-85